EdegX WhitePaper v1
  • Overview
  • Background & Trends
    • Computing Power Market
    • Challenges and opportunities
      • Challenges in Computing Power Centers
      • Edge Computing Trend
      • Web3-Driven Edge Network
  • EdgeX Project
    • Summary
    • Competitiveness
      • Community-Driven Ecosystem Construction
      • Decentralized AI Edge Computing Network
      • Real-World business Income
    • How to do
  • Core Technology
    • Computing Scheduling Framework
    • Ai Agent
      • Ai-Agent System Framework
      • Ai-Prouct Ai-Agent Framework
      • High Computing Edge Node Ai-Agent Framework
    • EdgeX OS
      • Core components
    • Ai-Products
  • Tokenomics
    • Overview of Token Economy and Incentive System
      • Tokenomics
      • Token Categories and Supply
        • Total Supply and Distribution of $EX:
        • Mining of $EX Token:
          • PoW(Edge Node)
          • POS(Edge Server)
        • EdgeX Points:
    • Incentive Mechanism
      • EdgeX Points Acquisition
      • Token Acquisition and Conversion
      • $EX Token Governance
  • Conclusion
    • Commercial Services
    • Protocols
  • Roadmap
    • Roadmap
      • Startup (Q2-Q4.24)
      • Verify (Q1-Q2.25)
      • EdgeX 1.0 (Q3.25 - Q2.26)
    • Cooperation
  • Team
    • Team
    • Adviser
    • Partner
  • Disclaimer
  • References
Powered by GitBook
On this page

References

  1. World Wide Web Consortium. (2022). Decentralized Identifiers (DIDs) v1.0.

  2. World Wide Web Consortium. (2023). Verifiable Credentials Data Model v2.0.

  3. Buterin, V. (2014). A Next-Generation Smart Contract and Decentralized Application Platform (White Paper). Ethereum.

  4. Beck, R. (2018). Governance in the Blockchain Economy: A Framework and Research Agenda. Journal of the Association for Information Systems, 19(10), 1020–1034.

  5. Helium White Paper. (2020). A Decentralized Wireless Network.

  6. Kassab, S. (2023). The DePIN Sector Map. Messari Research.

  7. Roman, R., Lopez, J. & Mambo, M. (2018). Mobile Edge Computing, Fog et al.: A Survey and Analysis of Security Threats and Challenges. Future Generation Computer Systems, 78, 680–698.

  8. Schollmeier, R. (2002). A Definition of Peer-to-Peer Networking for the Classification of Peer-to-Peer Architectures and Applications. Proceedings First International Conference on Peer-to-Peer Computing (P2P2002), 27–29.

  9. Benet, J. (2014). IPFS – Content Addressed, Versioned, P2P File System.

  10. Tanenbaum, A. S. & Van Steen, M. (2017). Distributed Systems: Principles and Paradigms (2nd ed.). Pearson.

  11. Kurose, J. & Ross, K. (2021). Computer Networking: A Top-Down Approach (8th ed.). Pearson.

  12. Nygren, E., Sitaraman, R. K. & Sun, J. (2010). The Akamai Network: A Platform for High-Performance Internet Applications. SIGOPS Operating Systems Review, 44(3), 2–19.

  13. Cai, Y., Xu, Y., Li, J. et al. (2020). Edge Computing in IoT: Distributed Computing for Smart Healthcare. Journal of Network and Computer Applications, 149, 102461.

  14. Zamyatin, A., Al-Bassam, M., Zindros, D., et al. (2021). SoK: Communication Across Distributed Ledgers. IEEE Security & Privacy Workshops, 99–109.

  15. Polkadot White Paper. (2020). Polkadot: Vision for a Heterogeneous Multi-Chain Framework.

  16. Russell, S. & Norvig, P. (2020). Artificial Intelligence: A Modern Approach (4th ed.). Pearson.

  17. Silver, D. et al. (2017). The Predictron: End-To-End Learning and Planning. International Conference on Machine Learning (ICML), 3191–3199.

  18. Dean, J. & Ghemawat, S. (2004). MapReduce: Simplified Data Processing on Large Clusters. OSDI, 137–150.

  19. Abadi, M. et al. (2016). TensorFlow: A System for Large-Scale Machine Learning. OSDI, 265–283.

  20. Voigt, P. & Von dem Bussche, A. (2017). The EU General Data Protection Regulation (GDPR). A Practical Guide. Springer.

  21. California Consumer Privacy Act (CCPA). (2018).

  22. Hyperledger Case Studies. (2019). [Multiple publications].

  23. Satyanarayanan, M. (2017). The Emergence of Edge Computing. Computer, 50(1), 30–39.

  24. Mao, Y., You, C., Zhang, J., et al. (2017). A Survey on Mobile Edge Computing: The Communication Perspective. IEEE Communications Surveys & Tutorials, 19(4), 2322–2358.

  25. Pollen Mobile. (2022). Community-Driven Decentralized Mobile Network.

  26. MakerDAO White Paper.

  27. Moloch DAO.

  28. Raicu, I., Foster, I. & Zhao, Y. (2008). Many-Task Computing for Grids and Supercomputers. IEEE Workshop on Many-Task Computing.

  29. Zhang, F. et al. (2020). A Survey on Serverless Computing. ACM Computing Surveys, 53(2).

  30. Shi, W., Cao, J., Zhang, Q., Li, Y. & Xu, L. (2016). Edge Computing: Vision and Challenges. IEEE Internet of Things Journal, 3(5), 637–646.

  31. Li, X., Chen, L. & Xu, Z. (2019). Edge Computing: A Primer. Springer.

  32. Wood, G. (2014). Ethereum: A Secure Decentralised Generalised Transaction Ledger (Yellow Paper).

  33. Huang, J. (NVIDIA). (Various keynotes/interviews).

  34. Wooldridge, M. & Jennings, N. R. (1995). Intelligent Agents: Theory and Practice. Knowledge Engineering Review, 10(2), 115–152.

  35. Costan, V. & Devadas, S. (2016). Intel SGX Explained. IACR Cryptology ePrint Archive, 2016(86).

  36. Zhao, F. et al. (2018). Trusted eXecution on ARM TrustZone. ACM Computing Surveys, 51(6).

  37. Voshmgir, S. (2020). Token Economy: How the Web3 Reinvents the Internet. BlockchainHub.

  38. Wang, T., Kliazovich, D., Bouvry, P. & Khan, S. U. (2017). GreenDCN: A Packet-Level Simulator of Energy-Efficient Data Center Networks. IEEE Transactions on Industrial Informatics, 14(2), 858–867.

  39. Yang, S., Hao, J., He, M., et al. (2020). A Multi-Agent Reinforcement Learning Approach for Performance Optimization in Edge Computing. Sensors, 20(7), 1928.

  40. SAP, Meta, ServiceNow, NVIDIA (Various announcements/interviews on Agentic AI).

PreviousDisclaimer

Last updated 4 months ago